Atomare Verunreinigung dient als Quanten-Informationsspeicher
Studie bringt neue Erkenntnisse

Die beiden Physiker Professor Dr. Artur Widera (rechts) und sein Doktorand Felix Schmidt erforschen Quantensysteme  | Foto: TUK/Koziel
  • Die beiden Physiker Professor Dr. Artur Widera (rechts) und sein Doktorand Felix Schmidt erforschen Quantensysteme
  • Foto: TUK/Koziel
  • hochgeladen von Wochenblatt Redaktion

TUK. Für die Farben von Edelsteinen oder die Leistungsfähigkeit moderner Halbleiter sind Verunreinigungen in Materialien ursächlich. Ähnliches gilt für Quantensysteme, wo es aber kaum erforscht ist.
Erstmals konnten Kaiserslauterer Physiker kontrolliert einzelne Verunreinigung aus Cäsium-Atomen in einem ultrakalten Quantengas aus Rubidium-Atomen einbringen. Sie haben beobachtet, wie die Verunreinigungen quantenmechanische Anregungen (Spin) mit dem Gas ausgetauscht haben. Zudem haben sie gezeigt, dass Cäsium-Atome Quanten-Information speichern können. Dies war bislang nicht möglich. Die Studie ist in der renommierten Fachzeitschrift „Physical Review Letters“ erschienen.
Verunreinigungen aus einzelnen Atomen wie bei Edelsteinen gibt es auch bei anderen Materialien und Werkstoffen. Auch in der Quantenphysik sind sie für verschiedene Effekte verantwortlich und daher für Experimente interessant. An der TUK haben Physiker um Professor Dr. Artur Widera und seinen Doktoranden Felix Schmidt nun erstmals beobachtet, wie sich solche Verunreinigungen in einem Bose-Einstein-Kondensat bei Rubidium-Atomen verhalten. „Damit bezeichnet man in der Physik einen Zustand von Materie, der vergleichbar mit flüssigen und gasförmigen Zuständen ist. Allerdings ist ein solches Kondensat ein perfekter quantenmechanischer Zustand, der sich wie eine Welle verhält“, erklärt Professor Widera, der das Lehrgebiet Individual Quantum Systems leitet. Für Physiker sei das Bose-Einstein-Kondensat ein beliebtes Modell, um Quanten-Effekte zu untersuchen – ähnlich wie die Fruchtfliege Drosophila in der Biologie und Medizin als Modellorganismus dient, um etwa genetische Fragestellungen zu beantworten.
In ihrer aktuellen Studie haben die Kaiserslauterer Physiker eine solche Verunreinigung in Quantengas untersucht. Dabei kühlen sie es auf Temperaturen nahe des absoluten Nullpunkts von -273,15° Celsius ab. „Auf diese Weise können wir ein quantenmechanisches System kontrollieren“, sagt Erstautor Felix Schmidt. Als Verunreinigung haben die Forscher Cäsium-Atome eingesetzt. Auf rund 10.000 Rubidium-Atome sind dabei fünf bis zehn Cäsium-Atome gekommen. „Das System lässt sich unter einem Mikroskop untersuchen. Das ultrakalte Gas hat eine Größe von zehn Mikrometern“, fährt der Doktorand fort. So haben die Forscher einzelne Verunreinigungen lokalisiert und die Änderung ihrer Struktur, des sogenannten Spins, durch die Wechselwirkung mit dem Quantengas beobachtet. „Bislang war es nicht möglich, einzelne Atome in einem solchen Gas zu beobachten. Es freut uns, dass es uns im Experiment gelungen ist“, sagt Schmidt.
Weiterhin haben die Forscher überprüft, ob sich die Cäsium-Atome als Informationsspeicher nutzen und gleichzeitig im Quantengas kühlen lassen. „Damit Atome Information speichern, muss ihr elektronischer Zustand erhalten bleiben“, erläutert Widera. „Da es aber im Kondensat mit den anderen Atomen zu Wechselwirkungen kommt, besteht das Risiko, dass sie durch Stöße die empfindlichen Informationen verlieren.“ Den Forschern ist es nun erstmals gelungen, die Atome stark in dem Quantengas zu kühlen, ohne dass Quanten-Informationen verloren gehen.
„Das Modell aus einzelnen Verunreinigungen in einem ultrakalten Gas realisiert ein Paradigma der Quantenphysik“, sagt Professor Widera. „Es kann als Ausgangspunkt für eine Vielzahl anderer Quanten-Experimente dienen.“ Insbesondere helfen die Erkenntnisse der Kaiserslauterer Wissenschaftler, besser zu verstehen, was auf der Quantenebene geschieht. Dies könnte zum Beispiel künftig eine Rolle spielen, um etwa Supraleiter zu verstehen und neue Materialien zu entwickeln. Supraleiter könnten Strom ohne großen Energieverlust bei normaler Umgebungstemperatur über weite Strecken transportieren. Bislang ist dies nur bei Temperaturen weit unter dem Gefrierpunkt möglich. ps

Autor:

Jens Vollmer aus Wochenblatt Kaiserslautern

Sie möchten diesem Profil folgen?

Verpassen Sie nicht die neuesten Inhalte von diesem Profil: Melden Sie sich an, um neuen Inhalten von Profilen und Orten in Ihrem persönlichen Feed zu folgen.

49 folgen diesem Profil

Sie möchten kommentieren?

Sie möchten zur Diskussion beitragen? Melden Sie sich an, um Kommentare zu verfassen.

Ausgehen & GenießenAnzeige
Gastiert in der Fruchthalle: das international renommierte Minguet Quartett | Foto: IIrene Zandel/gratis
5 Bilder

Kulturprogramm Stadt Kaiserslautern: Highlights und Genuss im April 2025

Kulturprogramm Stadt Kaiserslautern. Ganz im Zeichen des Frühlings und von Ostern stehen die Veranstaltungen, zu denen das städtische Kulturreferat im April in die Fruchthalle und in das Stadtmuseum einlädt. Außerdem geht im April die nächste Ausgabe des Kulturmagazins "LUTRA" an den Start, das dieses Mal die Schwerpunkte "Kultur und Sport" hat.  Soirée im Stadtmuseum: "Aufforderung zum Tanz" Eine "Aufforderung zum Tanz" bildet die musikalisch-literarischen Soirée am Freitag, 4. April 2025, um...

Online-Prospekte aus Kaiserslautern und Umgebung



Video einbetten

Es können nur einzelne Videos der jeweiligen Plattformen eingebunden werden, nicht jedoch Playlists, Streams oder Übersichtsseiten.

Abbrechen

Karte einbetten

Abbrechen

Social-Media Link einfügen

Es können nur einzelne Beiträge der jeweiligen Plattformen eingebunden werden, nicht jedoch Übersichtsseiten.

Abbrechen

Code einbetten

Funktionalität des eingebetteten Codes ohne Gewähr. Bitte Einbettungen für Video, Social, Link und Maps mit dem vom System vorgesehenen Einbettungsfuntkionen vornehmen.
Abbrechen

Beitrag oder Bildergalerie einbetten

Abbrechen

Schnappschuss einbetten

Abbrechen

Veranstaltung oder Bildergalerie einbetten

Abbrechen

Sie möchten selbst beitragen?

Melden Sie sich jetzt kostenlos an, um selbst mit eigenen Inhalten beizutragen.

Powered by PEIQ